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1.0 SINGLE CLASSIFICATION EXPERIMENTS

A paper containing a comprehensive treatment of sets of
two-parameter Weibull data arising from single factor experi-
ments, was published in the Journal of Statistical Planning
and Inference (Vol. 3, 1979, pp. 39 - 68). A second paper,
aimed primarily at an engineering audience was prepared and
submitted to the American Society For Testing and Materials (ASTM)
for presentation at their International Symposium on Contact
Rolling Fatigue Testing of Bearing Steels to be held in May 1981.
The paper will appear in the Proceedings of that meeting, which
is planned to appear as an ASTM special technical publication.

This paper extends the range of the tabular values needed
in conducting the analysis from a maximum sample size of n = 10
to a maximum of n = 30. Specifically, new tables are included

for n = 15(5)30 with censoring amounts ranging from r = 5(5)n

and with k 2(1)5 samples per experiment. In the paper, two

illustrative numerical examples are used to illustrate each of
the analysis procedures viz.:

(1) Testing the equality of shape parameters

(2) Testing the equality of scale parameters

(3) Setting confidence limits on the shape parameter

(4) Setting confidence limits on the tenth percentile
of each population sampled, and

(5) Conducting a single range multiple comparison
test to divide the population into groups.

SKF TECHNOLOGY SERVICES
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The data used for illustration were the results of roll-
ing contact fatigue tests conducted with several types of
steel using two distinct types of tester. The data were collect-
ed under an Air Force sponsored program with one set of tests
conducted at Wright-Patterson Air Force Base and the other at

the Pratt and Whitney Division of United Technology, Inc.

The analysis shows that the life ranking of the steels
-when analyzed as a set was the same for both test devices.
This methodology is now routinely applied within SKF to analyze’
data taken for industrial and DOD sponsors as well as for cor-

porate use.

An application of the analysis to a study of the compara-
tive effect of six bearing greases on the life of automotive
wheel bearings, was conducted under U. S. Army Contract No.
DAAK70-77-C-0034 and appears in the final report.submitted to
the U. S. Army Mobility Equipment Research and Development
Command at Fort Belvoir, Virginia. The report is SKF Number
AL78TO22 entitled "Performance of Automotive Wheel Bearing

Greases."

2.0 LOCATION PARAMETER ESTIMATION AND INFERENCE

During this contract year, work on inference for the Weibull

location parameter was extended, applied, and reported in full.

Extensions comprised (1) the computation of additional

OKF TECHNOLOGY SERVICES
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critical values of the statistic used for testing whether the

;E Weibull location parameter exceeds zero. Values are now avail-
able for sample sizes ranging from 10 to 40. (2) Additional

?i computations were performed for the purpose of comparing the

power of this inferential technique to the Mann-Fertig method.

The nower was found to be almost identical. (3) An analytical

proof was developed of the decreasing monotonicity with A of the
ratio w()) = %(rl)/é(rz), where rj<rp; and where %(r) is the ML
estimator of the Weibull shape parameter based on the first and
r~-th order statistics when an amount A is subtracted from each

order statistic.

The more general result regarding the monotonicity of
w(A) when %(r) is defined gs the ML estimator based on all
order statistics has not been proven but has repeatedly been

E demonstrated with data samples.

5 Two applications of the mefhodology were made using actual
data samples taken from two diverse areas of activity. The
? first application was to a data sample that represented time to
ignition events for fuzing devices. The possible application of j\
the three parameter Weibull model in this context had been sug-
gested in private communication with Dr. B. Kurkji an when he was
chief mathematician of the U. S. Army Materiel Command. The

model is attractive for this application because if it fits, the

SKF TECHNOLOGY SERVICES
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location parameter will correspond to the '"safe" time prior

to which an armed device cannot undergo ignition. Numerous
contacts were made at Wright-Patterson (W. Romans Air Force
Logistics), at Kirtland (Neal Chamblee), and at Eglin Air Force
Bases to discover sources of time-to-event data. After
discussions with staff members of the engineering and quality
assurance departments, Mr. Jasper Glover, head of the Reliabili-
ty Department at Eglin, finally referred us to Mr. Charles Yates
of his department, who kindly supplied a sample of 29 time-to-
event data unidentified as to source. The data were analyzed
and showed that a mixture model was a better fit to the data
than the three parameter Weibull model. The results of the
analysis were presented in a Technical Report, "Analysis of
Time-To-Event Data Supplied by Eglin Air Force Base.'" A copy

is included herein as Appendix I. Copies of the report were
sent to Mr: Yates at Eglin and on his recommendation, to Mr.

T. Mitchell who is responsible for the setting of safety re-
quirements. The results were also discussed with, and a copy
of the report sent to a Mr. L. Cox of the Army's Harry Diamond
Laboratories. Mr. Cox is concerned with the performance of

fuzing devices developed by the Army.
The Eglin analysis taught that the methodology is useful
for distinguishing two superficially similar looking types of

data, namely: samples from a mixture of a pair of 2-parameter

FTECHNOLOGY SERVICES
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Weibull population. To make this distinction, one censors a '
proportion of the upper end of the data and reperforms the hy-
pothesis test. If a significant result is no longer so after

the censoring, the mixture model is assumed to obtain. ]

A second application was made using data taken from the

é ! results of a foot race. The object was to determine whether
a bound on human performance potential could be found. Again,
it was found that a Weibull mixture model was in better accord

with the data than the three parameter Weibull model.

The extended tabular data and two illustrative examples
discussed above have been described in a paper, "Inference
on the Weibull Location Parameter,'" submitted for publication
to Technometrics. A verbal presentation having the same title
will be made at the Joint Meetings of the American Statistical
Association to be held in Houston, Texas in August 1980. A
handout synopsizing the talk has been prepared and is included

herein as Appendix II. i

3.0 WEIBULL REGRESSION OR ACCELERATED TEST ANALYSIS

During a previous contract year, we developed methodology

for drawing exact inferences in this setting: (1) Type II cen-
sored life tests are conducted at various levels of a factor !
referred to as a stress. (2) At each stress level, the life

follows a two parameter Weibull distribution with a shape para-
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meter R that is invariant with stress and a scale parameter
that varies inversely with a power y of the stress. Using the
distribution of certain pivotal functions determined by Monte
Carlo sampling, it was found possible to set confidence limits
on:
(1) The exponent in the relation between scale
parameter and stress,
(2) The Weibull shape parameter,
(3) A percentile of the life distribution at any
specific stress.
A verbal presentation of this material was made at the ASA
joint conferences in August 1979. A copy of the handout mater-

ial distributed at the conference is given in Appendix III.

A paper was prepared describing this work and illustrating
the methodology on four rolling contact fatigue test samples
conducted at four stress levels. Editorial changes to the
paper were made in the current contract year and the paper,
entitled "Confidence Limits for Weibull Regression with Censored
Data,'" appeared in the IEEE Transactions on Reliability, Vol.

R-29, No. 2, June 1980,

A question raised by a referee regarding the goodness of
the power function model for stress-life, prompted the recogni-

tion that one could perform such a test using the ratio of 3(1),

Ski TECHNOLOGY SERVICES
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the ML shape parameter estimate unconstrained by any relation
among the scale parameters, to the estimate B under the power
function constraint. Accordingly appropriate code was added

to the simulation program REGSIM to calculate %(1).

The program REGSIM as originally configured, calculates
the distribution of five random variables; these variables ]
being specified functions of the ML estimates E, and the p-th

quantile xp(S) estimated at stress S.

The program REGSIM has now been modified to acccmmodate
the calculation of five additional random variables giving a

total of ten. The first three are as follows:

(1) B/B
(2) B(1)/8
(3) (Y=7) « B

The next "k" are the values of the random variable
§1n(§p/xp) computed at the k stresses, at which life tests are per-
formed. The next (7-k) random variables are the values of E .

1n (xp/xp) at (7-k), other specified stresses.

The distribution of the first random variable above, é]e,
is needed for setting confidence limits on 8. The second is
used for testing the adequacy of the power function fit. The
distribution of the third random variable is needed for calcu-

lating confidence intervals on the stress-life exponent. Finally

Svi- TECHNOLOGY SERVICES
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the distribution of Sln(XP/xp) is used for setting confidence

intervals on x at any given stress level.

Computer runs have been made for k = 2, with life tests
at stresses s; = 1.0 and s, = 1.2. Supplementary stresses
were taken at 0.5 (0.1) 0.9. For k = 3, the life tests were
presumed to be run at S = 1.0, 1.1, and 1.2 with supplementary

stresses of 0.6(0.1)0.9.

The percentile p = 0.10 was used throughout and the sam-
ple sizes used for each life test weren = r = 5, 10, 15, 20.
Inasmuch as these distributions are invariant with respect
to the scale of the stress variable, they apply when the stresses,
in whatever physical units they are expressed, are proportional

to the values used in the simulation runs.

A short paper will be prepared, aimed at a user audience,

presenting the tables and illustrating their use.

4,0 TWO-WAY CLASSIFICATION EXPERIMENTS

The likelihood equations for a general two-way factorial
analysis with Weibull response have been derived. There are
presumed to be '"a'" rows and "b'" columns, representing the levels
of factors A and B respectively. Five separate hypotheses have
been considered for the scale parameter “ij’ applicable when

sampling row "i" and column "j":

SKF TECHNOLOGY SERVICES
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Hp nij = aj b1 n
H+ Nij = @i M

aj, b; and Cij are multiplicative row, column and interaction

j
effects subject to the constraints

b a b
* wbj = meij  meij =1 °
i=1 Jj=2 i=1 J=2

n is a constant "base level" scale parameter value. H1 is the

least restrictive hypothesis. Under H; each cell of the data
layout has its own unique scale parameter value. Hg is the
most restrictive hypothesis under which all cells are presumed
to have the same scale parameter. Under H, there is a row

and column effect, but no interaction. Under Hz there is only

a row, and under Hy, only a column effect.

The estimates of B8 and “ij which maximize the likelihood
function under each hypothesis subject to the row and column
constraints are listed in Table 1. They represent the case
where n items are tested in each cell until the first r fail.

We define xij(k) as the k-th ordered life within cell (i,j).

SKE TECHNOLOGY SERVICES

SR AN O




[ttt

“Sagrrve:

SHASIHLOdAH SNOIYVA HIANN SINIWIHILXE

10

I¥IHOLOVd ¥Od SNOILYNDA NOILVWILSE TW T 378Vl
aqe/FFy 130 137 0 = "TA M k4 aFAtt 13F ~aqe/""s + Sg/1 u =Ty : Sy
g ®© 4
ae/t 4 0= Aﬁﬂ>ﬁmﬂ\nﬂa HmﬂvHMnH-o -aqe/ g + Mg/t ufq = fru : ny
Ln\hﬂ>ﬂmh 0= Anﬂmm.\nﬁaﬂwmv 3t —aqe/ s + Eg/ ute = CTu : €y
. r = =1
(€ a H>\?3H 3=y o=fasta/fh ﬂm. 2 -
co - I Y LT T cﬂnﬂﬁ . 2 ulqle = CTyu : 2y
Jqe/stTATTA M [( _.,H>V (¢ ;>_ 1 7 (-4 * 1) g/t Cqle = [Ty :
q e
1=l =1 q®e ..
asfTp o = fTa/011 "2 Hw T -daqe/" s + Tg/1 uftolqle = Ctu : Iy
a e v
oFTu ¥o4 -3 SurATog Aq PUNOJ FLVWILIST MELAWVHUYA HAVHS TW SISIHLOAAH

R e e




AT80D048
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Likelihood ratio tests can now be constructed to test the more
restrictive of these hypotheses against less restrictive alter-
natives. For example, to test Hg, the hypothesis that nij is
constant over i and j, against the alternative that all nij

differ, one would calculate

In X = 1n L(Hs) - 1n L(Hl)

where L(Hy) denotes the likelihood function evaluated using
“ij and B estimated by the methods appropriate for hypothesis
Hy .

A useful sequence begins by testing H; against H; to assess

the hypothesis Ho:cij =1, i.e. no interaction. If Hj, is reject-

11
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ed, i.e., there is interaction, no other tests are performed.
If there is no interaction, one would then test H; against
H, and H, against H, to determine respectively whether only

column or row effects are real.

An alternate sequence would be to test Hg against H;. 1In
E this case, if Hy is accepted, no further tests are performed
and it is concluded that neither row, column nor interaction

effects are significant. If Hy; is rejected, Hg could then

be tested against Hp. If this is not significant, there is ]
interaction and testing ceases. If it is significant, there

is a row or column effect, or both. One then tests Hg against ,
Hz and Hy.

In either sequence of tests, H, is crucial for the test
of interaction. The equation for estimating the shape para-
meter under H; is characteristically different from the esti- 1
mating equations under the other'four hypotheses and special

numerical methods will need to be developed for calculating %2.

Under Hy, the estimation equation is the same as for a
single factor experiment in which k = ab tests are run. Simi-
larly, under Hg the estimating equation is identical to that
which applies to a single sample of size N = abn. That is, one

has only to combine the data in all ab cells of the design into

a single sample and estimate the shape parameter of that single

12
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sample to obtain Bg.

The estimating equation for és is of the same form as the
single factor experiment with k = a and with the data in each
row combined, i.e. ignoring the columns., Similarly for'g the
rows are ignored and the data within each of the columns is treated

as a single group in a multiple group sample with k = b,

Thus, in the absence of interaction, the shape parameter
estimates required for testing row and column effects can be ob-
tained by arranging the data in various ways using only the soft-
ware for ML estimation of the Weibull shape parameter in k groups.
The appropriate values of k are 1, a, b, and ab. Moreover, with
little if any loss of power, the testing can be based on just
these shape parameter estimates to avoid the need for additional

software to calculate the likelihood function.

We have, accordingly, generated the required tables for
2 X2, 2X 3, and 3 X 3 factorial arrangements with the sample

sizes n and censoring number r tabled below:

Rows X Columns n T
2 X 2 3 3
4 4
5 3
5 5
10 5
10 10
13
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Rows X Columns

]
=

2 X3

N R RT, - V)
NN RN W

3X3

[0~
[0~ R

Under the assumption that interaction is negligible (Cij = 1),

the analysis proceeds as follows:

1. Combine all data, calculate és-

2. Treat each cell as a separate sample, cal-
culate él-

3. Treat each row as a separate sample (ignore
columns), calculate és.

4, Treat each column as a separate sample (ig-
nore rows), calculate éﬁ.

5. Calculate él/és. If greater than its cri-
tical value, row effects or column effects
or both are significant.

6. Calculate éi/és. If significant, column
effect is real.

7. Calculate él/éﬁ. If significant, row effect
is real.

14
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Table 2 shows the results of the analysis of a portion of

a randomized block design for rolling contact endurance test-
ing performed by Ku et al. (1). In this experiment, it was
desired to determine whether there was a difference between

two 0ils meeting the specifications MIL-L-7808 and MIL-L-23699
with respect to their influence on fatigue life in rolling
contact. Ten specimens were run to failure with each lubricant

on each of ten test machines. We have arbitrarily selected

The values shown in each cell are (1) the ML estimate of
the tenth percentile X, 39 obtained using the ten data values
taken at the conditions corresponding to that cell. (2) The ML
estimate of Xg,6109 under the assumption that all cells have a
common shape parameter and (3) the ML shape parameter estimate

b
]
i
test machines Nos. 1 § 2 to form a 2 X 2 layout. l
i based on cell data. g

t

The values of éi and ég are shown in the center of the %
layout in Table 2. ég and éa are shown between the rows and %
columns respectively. For reference, the shape parameter es-
timate using the data for each tester are shown at the right
hand side of each row. The shape parameter estimates using the

combined data for each oil are given below each column,

To test the homogeneity of shape parameters, an assumption

of the analysis, one computes the ratio of the largest to

15
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smallest of the cell shape parameter estimates.

w = 6.86/2.94 = 2.33

The critical value for a 10% level test based on four
samples of size n = 10 having r = 10 failures is (2).

Y9.90(n = 10, r = 10, k

4) = 2.47

The hypothesis of homogeneous shape parameters is accept-

ed but just barely.

Proceding formally we form
B1/B5 = 1.506
This is substantially greater than the 10% critical value
(éi/éé)o.go = 1,085 so that row, column or both effects are
significant. Of course, an interaction effect, suggested by
the common B estimates of X 10, also would contribute to a

high value of the test statistic.

To test the difference in oils, we calculate éi/és = 1.083.
The 10% level critical value is (B1/83) g.9g = 1.085. Thus, the

lubricant difference is virtually significant.

To assess the difference between testers, we compute
B1/B4 = 1.47. This greatly exceeds the critical value 1.085,
suggesting a strong tester effect. This effect is not suggested

by the common B shape parameter estimates of X0.10 These es-
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timates in fact suggest an interaction effect.

The marginal shape parameter estimates suggest an inter-
action as well, for if the lube effect were the same with each
tester, the shape parameter estimates within each tester would /
be homogeneous. The ratio of the tester shape parameter esti-
mates is 5.54/3.48 = 1.59. This exceeds the critical value

wWp.90(20,20,2) for a 10% level test of the homogeneity of two

shape parameters based on censored samples of size 20.

This effect is also ascribable to the low shape parameter

estimate for the Tester No. 2 - MIL-L-7808 cell.

We conclude that, as in the analysis of variance for
normal distribution theory, inhomogeneous variance (shape
parameter) can cause specious results. A second application
was made to rolling contact fatigue data taken at two loads

and with two radii of curvature (3). These data also exhibited

- a nonhomogeneous shape parameter.
- A paper will be prepared on the analysis of randomized
- block designs with Weibull response.
. 5.0 GRCUPED DATA
] Computer program WEIBSIM for simulating sets of Weibull
distributed data has been modified to form a new program GROUPSIM
]
18
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for the analysis of grouped Weibull data.

The program generates one or more ungrouped samples, allo-
cates each failed item to an interval, replaces its actual value
by the cell midpoint value, and then performs conventional max-

imum likelihood estimation using the data thus modified.

The program assumes type II censoring at the r-th failure. The
implication is that testing stops when a pre-established failure
occurs. In actual testing, additional failures could occur

prior to the end of the interval containing the r-th failure.

The intervals have been chosen logarithmically. An
initial interval 'DELT' is input to the program along with a

factor, 'FAC’.

The first interval extends from 0 to DELT. The second
interval extends from DELT to DELT X FAC. The terminus of the

I-th interval is calculated as

A(I) = DELT X (FACc)I-1

or recursively as

A (1) FAC X A (I-1)

The program samples from a Weibull population having shape
parameter B= 1 and a p-th percentile Xp = 1.0 for specified p.

The simulation results apply to any 2 parameter Weibull distri-

19 ﬁ
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bution if the terminus X4 of the i-th interval satisfies
(x;/xp)% =4 (1)
i/%p

For the distribution used in the simulation, the 1st and

99-th percentiles are 0.0954 and 43.70 when using p = 0.10.

GROUPSIM was used to determine the distribution of the
pivotal quantities é/B and gln (£0,10/X0,10) for a single un-
censored sample of size n = 30, using DELT = 0.1 and FAC = 2.0,
1.5, and 1.2,

The 5-th, 50-th and 95-th percentiles are tabled below along

with the corresponding ungrouped values.

B/8 Bin(x0.10/%0.10)
0.05 0.50 0.95 0.05 0.50 0.95
FAC = 2.0  0.900  1.056  1.269 -0.346  0.138  0.742
FAC = 1.5  0.927  1.073  1.267 -0.306  0.132  0.672

FAC = 1.2 0.951 1.080 1.239 -0.234 0.131 0.557
UNGROUPED 0.826 1.057 1.335 -0.567 0.0536 0.915

To assess the sample size effect the values for n = r = 5 ¢nd

n=r1= 50 with DELT = 0.1 and FAC = 1.5 are tabled below.

20
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B/ B1n(Xp,10/%0.10)

0.05  0.50  0.95 0.05  0.50  0.95
n=r=5 0.768 1.066 1.654  -0.869 -0.129  0.913
UNGROUPED ~ 0.680  1.235  2.815  -1.142  0.447  4.445
n=r=25 0,937  1.060 1.213  -0.252  0.121  0.564

UNGROUPED 0.852 1.018 1.235 - - -

The following effects are observed:
(1) There is consistently less variability in the grouped
data results than the associated ungrouped values.
(2) For fixed sample size, the variability decreases with
the interval width as expected, but does not appear

to be converging toward the ungrouped results.

(3) The difference between grouped and ungrouped percen-
tage decreases with sample size, i.e. convergence with

sample size appears to take place.

Superficially it appears that grouping the data results in great-
er precision in estimating the parameters than ungrouped data,

a counter intuitive result. The grouping, however, assumes per-
fect information regarding the parameters for the purpose of
standardizing the intervals. That is, the values of

(xi/%9.10)® defining the interval end points is assumed

21
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known, whereas, in fact, only the xj are known. It is recommend-

ed that this effect be examined in future studies. It is further

recommended that the results given herein, obtained by conventional
ML estimation using adjusted data, be compared in future studies

to those obtained with direct ML estimation using a grouped data

formulation.
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ANALYSIS OF TIME-TO-EVENT DATA

SUPPLIED BY EGLIN AFB

Introduction and Summary

A methodology has recently been developed under the sponsor-
ship of the Air Force Office of Scientific Research for the
unbiased point and interval estimation of the location parameter
of a three-parameter Weibull distribution.

It has been suggested {1] that time-to-event data of the
type encountered in fuzing mechanisms may follow a three-parameter
Weibull distribution. If this is so the location or threshold
parameter of the distribution represents the '"safe'" time prior
to which the ignition event can not occur.

In this context a lower confidence limit on the location
parameter represents a quantifiably conservative estimate of the
"safe time" for the device.

This report describes the analysis of a sample of 29 uniden-
tified time-to-event observations supplied by Eglin Air Force Base.
Under the assumption that the data are drawn from a three-

parameter Weibull population, a median unbiased estimate and a
lower 95% confidence limit for the location parameter have been
calculated using computer program "LOCEST" implementing the methoc-
dology referred to above. Subtracting the median unbiased location
parameter estimate from each event time and regarding the data thus
adjusted as a two-parameter Weibull sample, computer program

"WEIBEST" was used to estimate the shape and scale parameter by

the method of maximum likelihood. A chi-square goodness of fit
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test was then performed and indicated that the fitted three-
parameter Weibull distribution did not adequately describe the
data. Instead, the data appear to consist of a mixture of two
Weibull distributions with one population, representing roughly
86% of the data, having a shape parameter of B8 = 18.6 and a second
population representing 14% of the observations and having a shape
parameter estimated graphically to be B = 1.4.

The data thus support the assumption that the population
from which the sample was drawn consist of a mixture of effective
items having a two-parameter Weibull distribution and a 10-20%
subpopulation of "duds" for which the event occurs at random
intervals in accordance with a poisson process. To estimate the
"safe" time associated with some arbitrary low event probability,
the long lived items should be censored prior to estimating the
Weibull parameters. If this is not done the Weibull shape para-
meter for the effective items will be underestimated and overly
conservative safe lives will be computed.

Section 2.0 of this report describes the methodology for
location parameter estimation., Section 3.0 gives the details

of the analysis of the Eglin time-to-event data.
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Methodology

2.1 The Weibull Distribution

The three parameter Weibull distribution has the cumulative

form:
Prob[X < z] = F(x) =1 - exp [-(m-Y)/n)B] x>y (1)
where Y = location parameter
n = scale parameter
B = shape parameter
The two-parameter Weibull distribution is the special case
of Equation (1) in which the location parameter y = 0. j

2.2 Graph of Two and Three Parameter Weibull Functions

For the two-parameter Weibull distribution it is readily

shown that

[f1]

ulz) = min(1/(1-F(x)) = B n x -Bn n (2)

Thus, in the two-parameter case y(x) is a linear function of
2n x having slope B and intercept -B&nn. For the three-parameter
case

yl(x) = tmin (1/(1-F(z)) = B n(z-y) - B inn ; x>Y (3)

The slope of a plot of y(x) against &nx in the three-parameter

case
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The slope is infinite at x = y and decreases monotonically
thereafter to an asymptote of RB. Figure 1 is a sketch of y(z)

plotted against fnx for vy = 0 and y > 0.

2.3 Graphical Estimation of Shape Parameter

Let z, <xy<xz<...z denote the ordered observations in a
random sample of size n drawn from a two or three-parameter Weibull
distribution. An estimate of f(xi) may be calculated for each
of the ordered observations using any of the various choices of

plotting position. A common choice is:

;'(xi) = i/(n + 1) (5)

An estimate ;(xi) may then be computed by substituting

%(mi) into Equation (2).

If the sample is drawn from a two-parameter Weibull distri-
bution ;(xi) will tend to plot against inz, as a straight line
with slope B. If y>0, i.e. the population is a three-parameter
Weibull distribution, ;(xi) will tend to be a concave function
of Lnx approaching a constant slope 8 for large xz,; values.

Figure 2 shows how a plot of ;(xi) vs. &nx; might appear
for a sample drawn from a three-parameter Weibull distribution.

If these data were regarded as a two-parameter Weibull sample
a graphical estimate of the shape parameter EA could be found as
the slope of the straight line that best fits the complete data
sample.

If only a subset of the smallest ordered values were used

in graphically estimating the shape parameter, the estimate

éL would be obtained. For three parameter Weibull data éL will

[




&

y(x)

FIGURE 1. PLOT OF y(x)

ALT9P026

n(y) en(x)
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f[ ' tend to exceed B,. On the other hand when the sample is drawn
1i from a two-parameter Weibull population (y=0), éL and éA will

be comparable.

2.4 Maximum Likelihood Estimation of Shape Parameter

Rather than graphical estimation we consider maximum likeli-
hood (ML) estimation of B.
For a sample of size n censored at the r-th ordered observa-

tion «x the ML estimate of 8 for a two-parameter Weibull distri-

r?

bution is the solution of the nonlinear equation:

L S
1/8 + L logxi/r - ( T x3 Zogxi+xr(n—r)xr)/( Lax; + (n-rlx,) =0 (6)

It has been shown (cf. McCool [2]) that E/B is a pivotal
function, i.e. it follows a distribution that depends on n and
r but not on the underlying Weibull population parameters.

Denoting the solution of Eq. (6) as éq and the solution of
Eq. (6) with ry<r as 8, the distribution of w = B,/8; will
depend only upon n, r,, and r when the underlying distribution
is indeed of the two-parameter Weibull form. When the underlying
distribution is the three-parameter Weibull the mean value of
éL will increase proportionally more than the mean value of EA.

With the percentiles of »w determined by Monte Carlo sampling
for specified ry, r and »n one may reject the hypothesis that

Yy = 0 at the 100a% level if

B, /8, >y, (7)
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2.5 Interval Estimation

Given that a random variable x is drawn from a three-parameter
Weibull population having location parameter y the transformed
variable y = x-y will follow a two-parameter Weibull distribution
with the same scale and shape parameters as the three-parameter
distribution. Thus, if y is subtracted from the observed data
prior to calculating EA and éL from Eq. (6), the resulting ratio,

denoted

w(y) = B,/8; (8)

will follow the null distribution of w determined by Monte Carlo
sampling from a two-parameter Weibull population for given values
of =, r, and r.

We may thus write the 100(1-c)% probability statement
Prob [w(y) < w; 41 =1 -0 (9)

We also need the fact, heuristically suggested by the analogy
to graphical estimation, that if an amount A is subtracted {rom
each observation in a given sample prior to calculating
éA and éL’ w(i) = §A/§L will be a decreasing function of X.
Accordingly, we may invert the inequality of Eq. (9) to give a

100(1-a)% lower confidence limit for vy, i.e.

} (10)

-1
>
Y w {wl_

s 3
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3.0 Analysis of Eglin Data j

3.1 Analysis as a Two-Parameter Weibull Sample

Table 1 is the output of computer program WEIBEST which was
applied to the raw Eglin data. The tabular output at the top of
Table 1 is a sorted list of the 29 observations of time-to-event
in seconds.

The first line below the sorted times gives the maximum

likelihood estimates of the tenth and 50-th percentiles (desig-
nated Lyg and Lgg, respectively) and the Weibull shape parameter “

B, computed under the assumption that the data were drawn from

a two-parameter Weibull distribution. Subsequent lines in Table
1 give lower and upper 90% confidence limits and median unbiased
estimates of Lyg> Lgg and 8,

Figure 3 shows a probability plot of the data using scales
on which two parameter Weibull samples tend to plot as a straight
line. The fitted two-parameter population is shown as a solid
straight line and is clearly a poor fit to the data. The two
dotted straight line segments fitted to the data are discussed

further below.

3.2 Analysis as a Three-Parameter Weibull Sample

Figure 4 is a plot of the function w(A) computed from Eq.
(8) for positive A values. In calculating this plot r; was taken
as 5 and r, as 29, The plot decreases with A, approaching a ver-
tical asymptote as A approaches the first order statistic x ;).




TIME-TO-EVENT DATA FROM EGLIN AFB

Group No. 1 Lives
5.2200 6.0700
5.4100 6.1500
5.7300 6.2600
5.7800 6.3100
5.7900 6.3400
5.8700 6.3500
5.9200 6.4300
5.9800 6.4400
6.0000 6.4500
6.0300 6.4600
Lig
0.4556E 01
LCL Ljg
0.3748E 01
LCL Lgg
0.6024E 01
LCL BETA
0.3893E 01

TABLE 1

WEIBEST OUTPUT RAW DATA

—

[@RVe N E A NerNe Yo No ) No))

.5500
.5600
-5900
.6000
. 7300
.1300
.8300
.2800
.2800

Lsg
0.6501E 01
MED Lig
0.4524E 01
MED Lgg
0.6499E 01
MED BETA

0.5125E 0Ol

-10-
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BETA

0.5299E 01
UCL Lyg
0.5113E 01
UCL Lgg
0.6912E 01
UCL BETA

0.6592E 01
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The median unbiased estimate ;0.5015 shown to be the A value
associated with w(X) = w ., and the 95% lower confidence limit
;0.05 is the A value corresponding to Wy g5e

Note that if w(0)< W, g5 » @ positive value of ;0.05 cannot
be found.

Computer program LOCEST calculates ;0.50 and ;0_05 for spe-
cified values of w g and w_ 5, using a golden section search tech-
nique. The appropriate values found from Monte Carlo simulation
for n=30, r;=5, r =30 are

1.294

Wp, 50

w g5 = 3.279

The values for n=29, »r=29 are not likely to differ substan-
tially from these. Table 2 shows the LOCEST output.
The Weibull shape parameter considering 24 items censored
at the 5-th smallest time is
B, = 27.9
Using all the data the estimate is
gA = 5.30
The ratio §L/§A = 5.27 corresponds to w(o) and since w(o) exceeds
wy 50 and wy g5, positive values of both ;0'50 and ?0.05 may be
calculated.
These values are Yo.05 = 3.88
and Yy gp = 5.09
The two parameter estimates of x0.10=L10-;.50 and z; 59
=Lgp~Y,50 are 0.364 and 1.243, respectively. The estimated shape

parameter from the adjusted data is 1,53.

-13-
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TABLE 2

e et mian e e — ol

LOCEST OUTPUT

TIME-TO-EVENT DATA FROM EGLIN AFB

L o

WEIBULL LOCATION PARAMETER ESTIMATION

SAMPLE SIZE,N= 29

TRUNCATION NUMBER FOR LOCATION PARAMETER ESTIMATION,Rl= §
NUMBER OF FAILURES,R= 29

W50= 1.294

} W95= 3.279
BETA HAT(R1)= 27.940 i
BETA HAT(R) = 5.299

BETA HAT(R1)/BETA HAT(R)= 5.272

j MEDIAN UNBIASED ESTIMATE OF GAMMA= 5.091

- LOWER 95% CONFIDENCE LIMIT FOR GAMMA= 3.881
ADJUSTED MAXLIKE ESTIMATES OF 10-TH AND 50-TH PERCENTILE
X0.10= 0.364

X0.50= 1.243 ADJUSTED BETA = 1.533

=18~
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Figure 5 is a probability plot of the data after adjustment
by subtraction of ;0.50, with the fitted distribution shown as
a solid straight line. A chi-square goodness of fit test was
applied and led to rejection of the hypothesis that the fitted
distribution actually represented the data (cf. Appendix). These
dashed line segments emphasize that the behavior in the two tails
is inconsistent with the fitted distribution.

Returning to Figure 3, we note that the two dashed line seg-
ments together fit the observed data very well and suggest that
the data may be a mixture of two Weibull populations; one popula-
tion having a high shape parameter value and low mean time-to-event
and a second population having a much lower shape parameter value
and a high mean time-to-event. For this data sample 86% of the
sample belongs to the first population.

To estimate the parameters of the first population, the data
were censored at the 24-th event time and WEIBEST was rerun. The
results are given in Table 3.

The shape parameter is estimated to be 18.6. This is much
' , higher than the value 5.3 shown in Table 2 based on all the data.

Figure 6 is a probability plot of the censored data and con-
firms the good fit of the two-parameter Weibull population to the
bulk of the early events.

A graphical estimate of the shape parameter for the long

event time items is 1.4, This is consistent with a shape para-

. meter of 1.0 which suggests that the long event time population

may have an exponentially distributed time between failures

characteristic of a poisson process governing the occurrence of

events. This suggests that the late events correspond to a sub-

-15-
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TABLE 3
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EGLIN DATA CENSORED AT 24-TH ORDERED OBSERVATION

roup No. 1 Lives

(e ANe R0 RU, R, RV, R0, R6, B6, BN,|

.2200
.4100
.7300
.7800
- 7900
.8700
. 9200
.9800
.0000
.0300

Lig
0.5695E 01

LCL Ljg
0.5366E 01

LCL L50
0.6166E 01
LCL BETA

0.1296E 02

OOV O™

.0700
.1500
.2600
.3100
.3400
.3500
.4300
. 4400
L4500
. 4600

OO ONONOYOY

.5500
.5600
.5900
.6000S
.6000S
.6000S
.6000
.6000S
.6000S

250
0.6301E 01
MED Lio

0.5677E 01
MED Lsg
0.6303E 01
MED BETA

0.1782E 02

-16-
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0.1863E 02
UCL Ljo

0.5870E 01
UCL Lgg
0.6436E 01
UCL BETA

0.2377E 02
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population of '"duds" wherein the event is triggered by some sort

of random shock rather than by the design mechanism.

3.3 Discussion of Data Analysis

The data do not confirm a three-parameter Weibull model im-

plying a "safe'" time prior to which the "event" cannot occur.

A '"safe' time must therefore be defined as the time associated

with some arbitrary low probability that the event will occur

prior to it. Because the data suggest a mixture of Weibull models

the direct use of a two-parameter Weibull model, as shown in

Figure 3, will result in overly conservative safe time estimates,

This may be overcome by censoring 15-20% of the long time evehts

which correspond to a population of "duds" that are mixed with

the effective items.
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APPENDIX
GOODNESS OF FIT TEST FOR THREE-PARAMETER WEIBULL

From Tables 2 and 3 the fitted three-parameter Weibull CDF

has the equation

a _ _ t 1,534
Flx) = 1 exp 0.10536 [573323& (Aol)

where

t=x - 5.09 (A.2)

We divide the ¢ axis into 5 intervals each having a 20% occur-
rence probability by calculating the percentiles ¢, ,,,

t0.40, t0.60 and t.go where tp satisfies

1.534
p=1-cxp -~ .10536 {*p/.3643] (A.3)

The expected number of observations in the i-th interval is

e; =nXp= 29 x .20 = 5.8 (i = 1,...5) (A.4)

The following Table shows for each interval the observed

number of observations in the interval, o;, the expected number,

e;s, and the square of the differences (o;- ei)?

Interval on t o;_  _ei_ (o;-e;)2
0 - 0.5941 2 5.8 14.44
> 0.5941 - 1.020 9 5.8 10.24
>1.020 - 1.492 11 5.8 27.04
>1.492 -~ 2.154 4 5.8 3.24
> 2,154 - ®© 3 5.8 7.84
A-1
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Under the hypothesis that the data were drawn from the fitted
distribution, the quantity
5 2
u= L (o -e;)°/e; =56.2/5.8 = 9.69 (A.5)
i=1
asymptotically follows a x2 distribution with m-p-1 degrees of

freedom where:

m = no. of intervals

p = no. of parameters estimated by the method

of maximum likelihood

This asymptotic result is generally believed to be applicable
if e; = 5. In the present case m=5 and p=3 so that u will be
approximately distributed as xz(l) under the null hypothesis.

From tables of the x2 distribution we find

2 =
X0.95(1) = 3.84

Since u = 9.69 > 3.84 the null hypothesis is rejected at the 5%

significance level.
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INFERENCE ON THE WEIBULL LOCATION PARAMETER

J. I. McCool
SKF Industries, Inc.

King of Prussia, Pa. 19406

1. HYPOTHESIS TEST: 2 vs. 3 PARAMETER WEIBULL

The two-parameter Weibull distribution has CDF

F(x) = l-exp-[x/n]B

The maximum likelihood estimate of the shape parameter B
calculated from the ordered observations xj in a random sample
of size n type II censored at the r-th failure is denoted B(r)
and is the solution of:

~

~ r n
178 + I ln(xj)/r- xieln(xi)/
iel i=1

=]
w )

1

where xj = Xp, i > r.

Define the random variable
w =8 (rq)/ B(r)

where rq <r. The distribution of w depends only on ry, r

and n.

When sampling from the three-parameter Weibull distri-

bution with location parameter y > 0, w becomes stochastically

larger. The acceptance region for a 100a% level test of Hp: y=
0 against against Hy: Y >0 {is:

SKF TECHNOLOGY SERVICES
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- B(ri)/B(r)< wi_q

Percentage points found by Monte Carlo sampling are
given in Table 1. 1In studies with B=1 the choice ri=5 was
found to be nearly optimum for all n and r in the range
represented in Table 1.

2. INTERVAL ESTIMATION
Subtract Y(>0) from each ordered observation in a
random sample from a three-parameter Weibull distribution.
Define

w(d) = B(rq)/ B(r).

w()) is a decreasing function of A and w(A=y) follows the
same distribution as w calculated from two-parameter Weibull
samples.

Inverting the statement: Prob[w(Y)< wy_.al=zl-a gives
the lower 100(1-%)% confidence limit:

Y> w=N(wi_a).

3. EXAMPLE .
The times to an ignition event for 29 fuzing devices
are as follows:
5.22, 5.41, 5.73, 5.78, 5.79, 5.87, 5.92, 5.98, 6.00, 6.03,
6.07, 6.15, 6.26, 6.31, 6.34, 6.35, 6.43, 6.u4U4, 6.45, 6.46,
6.55, 6.56, 6.59, 6.60, 6.73, T7.13, 7.83, 9.28, 10.28

Using rq1=5 and r=29 gives

8 (r1) = 27.9 and B(r) = 5.30

2
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A ~

B(rq1)/8(r) = 5.27 >3.279 = wp.g5(rq=5 ,r=30)

The two-parameter Weibull hypothesis is rejected in
favor of the three-parameter alternative.

The median unbiased estimate of the location parameter,
Yo.50 is found by solving

w(Yg.50) = wp.50 = 1.294
to be

A

Y0.50 = 5.09

~

A lower 95% confidence limit Yo, 509 was found by solving
w(Yp.p5) = wo,95 = 3.279

to beh
Y0.05 = 3.88
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INFERENCE IN WEIBULL REGRESSION

John I. McCool, SKF Industries, Inc.
King of Prussia, PA 19406

THE MODEL

A random variable x is presumed to follow a two-parameter
Weibull distribution with shape parameter B and scale parameter
n that varies as an inverse power of a positive deterministic
external variable S, generically termed a stress. That is,
F(x|s) = 1 - exp - [x/n(s)]® ()
n(s) = ny s7 (2)
with No? B, Y»x> 0
As a consequence of (1) and (2) the p-th quantile at stress S is

x,(8) = (-an (1-p))Y/E « nes) (3)

MAXIMUM LIKELIHOOD (ML) ESTIMATION

A life test is carried out at each of k stress levels denoted
Sl, SZ"’Sk' At the i-th stress level n, items are tested until
the first Ty ordered failures are observed (type II testing).

The ML estimates of Yy and B are calculated as the simultaneous
solution of the following equations.

k k AN n ~

X L Ty z SiYB logsi ti[xi(n]s
.21 rilogsi - 1=1 ri-l ;a‘ﬁi j.li =0 (4)
1-

e N L TT)
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x i kK seh Ry 8
: L1 A
x+ - - (5) i
B Yy "1 8 i
I T, I S.; X ps
jm1 1 i=1 1 j=1 "10) |

where xi(j) is the j-th ordered life in the i-th sample.

.The ML estimate of n is

3={z g -—%J-B}/}: 1-}1/‘3 (6)
i=1 j=1 ( ) i=1

The ML estimates of n(s) or x (S) are given by Eqs. (1) and
(2) on subst1tut1ng the ML estlmates of vy, B and No*

PIVOTAL FUNCTIONS

The following functions are "pivotal", i.e. they follow
distributions that do not depend on the population values of
the parameters:

q = B/8 (7)
Wt e (Y- )8 (8)
ut = Bn [x(8)/x,(5)] )

The distribution of q and w® depends on Kk, Si, n, and ;.

The distribution of u* depends additionally upon p and S. For i
fixed choices of these parameters the distributions may be '

determined by Monte Carlo sampling.
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INTERVAL AND MEDIAN UNBIASED POINT ESTIMATES

Two sided 100 (1-a)$% interval estimates of B8, y and xp(S)
may be calculated in terms of the ML estimates and the percentage
points of q, w* and u* as:

B/Q(l_a/z) - <3 < E/qalz (10)
; - wfl_alzla Ly < ; - W;/z/g . (11)

x,(8) + exp [-uby_/o/B] < x,(S) < X,(S) « exp [-udy /8]  (12)

Median unbiased point estimates are calculable as:

B' = B/ay ¢4 as
A ~ * ~

Y om Y- wg co/B 4)
xp(S) = x,(5) * exp [-ug_go/P] (15)

PRECISION MEASURES

A useful index of how precisely B is determined by the series
of life tests is the ratio R of the upper to lower ends of its
confidence interval.

R = q(1-a/2)/ﬂcq/z) @ae)

For Y the median length Lo 50 of the confidence interval is
a convenient index calculated as

) ® "
Ly.so ® (Wi.ay2 - Yay2)/B4g, 50 (7)
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For xp(S) the median ratio R0 50 of upper to lower confidence
interval is recommended.

Rg.50 = ©XP [(‘“;/z * “I-a/z)/sqo.so] (18)

NUMERICAL EXAMPLE

Rolling contact fatigue tests of n, = 10 hardened steel
specimens were conducted at k = 4 levels of the contact stress.
The tests were continued until all elements had failed (ri = 10).
The results are:

Orderéd Lives

1.67, z.20, 2.51, 3.00, 3.90, 4.70, 7.53, 14.70,
27.76, 37.4

0.80, 1.00, 1.37, 2.25, 2.95, 3.70, 6.07, 6.65,
7.05, 7.37

0.012, 0.18, 0.20, 0.24, 0.26, 0.32, 0.32, 0.42,
0.44, 0.88

0.073, 0.098, 0.117, 0.135, 0.175, 0.262, 0.270,
0.350, 0.386, 0.456

The ML estimates are

~

8 = 1.166 Y = 13.89 N = 2.20

The 5-th, 50-th and 95-th percentiles of the distribution
of q, w* and u* corresponding to k = 4, n, = r; = 10 and the
specified values of S; are given in Table 1. The distribution
of u* was evaluated for p = 0.10 with § = 0.75 x 106
with the four test stresses.

psi and




A - P S - . B Y U A TR | e o T U

AL79P022
TABLE 1 '
Percentiles of Pivotal Functions
k=4,n=1=10
Sl=0.87, Sz=0.99, 83=1.09, S4=1.18
0.05 0.50 0.95
q = B/B 0.8459 1.024 1.277
wk = (Y-Y)E -2.433 -0.3783 2.293
ut = 8log [xg 39/Xg 10l
S = 0.75 -0.9238 0.0555 1.023
S = S1 = (0,87 -0.6495 0.0441 0.8209
S = Sz = 0,99 -0.5170 0.0305 0.7520
S = S3 = 1,09 -0.5309 0.0318 0.7671
S = S4 = 1.18 -0.6079 0.0396 0.8193

90% confidence intervals for g and y are

0.913 = 1.166/1.277 < B < 1.166/0.8459 = 1.378

11.92 = 13,889 - 2.293/1.166 < y < 13.889 + 2,433/1.166 = 15.98

Median unbiased estimates are

8' = 1.166/1.024 = 1.139

Y' = 13.889 + 0.3783/1.166 = 14.21
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| ’ The precision measures based on a 90% interval are )

R=1.51

The confidence intervals and unbiased estimates for x

. |
are listed below for each stress along with the precision ﬁeigure §
RE _ . 1

i

) ) 90% Confidence Interval
000 oo g
X5.10 ate Lower Upper 50.50_

0.75 16.55 7.22 38.4 6.70

0.87 2.13 1.09 3.86 4,21 1
0.99 0.358 0.193 0.572 3.42 P
1.09 0.094 0.050 . 0.152  3.55 :
1.18 0.031 0.016 0.054 4.03

Figure 1 shows Rg 50 plotted against stress. The minimum
value is only slightly larger then for a single uncensored sample
| of size n = 40.
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